Carnosine is a unique dipeptide that can inhibit glycation throughout the body, thereby helping to slow normal aging processes. Read more Science from Life Extension Magazine below:
Would carnosine or a carnivorous diet help suppress aging and associated pathologies?
Carnosine (beta-alanyl-L-histidine) is found exclusively in animal tissues. Carnosine has the potential to suppress many of the biochemical changes (e.g., protein oxidation, glycation, AGE formation, and cross-linking) that accompany aging and associated pathologies. Glycation, generation of advanced glycosylation end-products (AGEs), and formation of protein carbonyl groups play important roles in aging, diabetes, its secondary complications, and neurodegenerative conditions. Due to carnosine's antiglycating activity, reactivity toward deleterious carbonyls, zinc- and copper-chelating activity and low toxicity, carnosine and related structures could be effective against age-related protein carbonyl stress. It is suggested that carnivorous diets could be beneficial because of their carnosine content, as the dipeptide has been shown to suppress some diabetic complications in mice. It is also suggested that carnosine's therapeutic potential should be explored with respect to neurodegeneration. Olfactory tissue is normally enriched in carnosine, but olfactory dysfunction is frequently associated with neurodegeneration. Olfactory administration of carnosine could provide a direct route to compromised tissue, avoiding serum carnosinases.Ann N Y Acad Sci. 2006 May;1067:369-74
Could carnosine or related structures suppress Alzheimer's disease?
Reactive oxygen species, reactive nitrogen species, copper and zinc ions, glycating agents and reactive aldehydes, protein cross-linking and proteolytic dysfunction may all contribute to Alzheimer's disease (AD). Carnosine (beta-alanyl-L-histidine) is a naturally-occurring, pluripotent, homeostatic agent. The olfactory lobe is normally enriched in carnosine and zinc. Loss of olfactory function and oxidative damage to olfactory tissue are early symptoms of AD. Amyloid peptide aggregates in AD brain are enriched in zinc ions. Carnosine can chelate zinc ions. Protein oxidation and glycation are integral components of the AD pathophysiology. Carnosine can suppress amyloid-beta peptide toxicity, inhibit production of oxygen free-radicals, scavenge hydroxyl radicals and reactive aldehydes, and suppresses protein glycation. Glycated protein accumulates in the cerebrospinal fluid (CSF) of AD patients. Homocarnosine levels in human CSF dramatically decline with age. CSF composition and turnover is controlled by the choroid plexus which possesses a specific transporter for carnosine and homocarnosine. Carnosine reacts with protein carbonyls and suppress the reactivity of glycated proteins. Carbonic anhydrase (CA) activity is diminished in AD patient brains. Administration of CA activators improves learning in animals. Carnosine is a CA activator. Protein cross-links (gamma-glutamyl-epsilon-amino) are present in neurofibrillary tangles in AD brain. gamma-Glutamyl-carnosine has been isolated from biological tissue. Carnosine stimulates vimentin expression in cultured human fibroblasts. The protease oxidised-protein-hydrolase is co-expressed with vimentin. Carnosine stimulates proteolysis in cultured myocytes and senescent cultured fibroblasts. These observations suggest that carnosine and related structures should be explored for therapeutic potential towards AD and other neurodegenerative disorders.J Alzheimers Dis. 2007 May;11(2):229-40
Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes.
OBJECTIVE: Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction and MG synthesis have not been investigated in humans until now. RESEARCH DESIGN AND METHODS: Thirteen people with type 2 diabetes were given a heat-processed test meal with a high AGE content (HAGE; 15.100 AGE kU, 580 kcal, 54 g protein, 17 g lipids, and 48 g carbohydrates) before and after a 3-day therapy with benfotiamine (1,050 mg/day). Macrovascular flow-mediated dilatation (FMD) and microvascular reactive hyperemia, along with serum markers of endothelial disfunction (E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), oxidative stress, AGE, and MG were measured during both test meal days after an overnight fast and then at 2, 4, and 6 h postprandially. RESULTS: The HAGE induced a maximum reactive hyperemia decrease of -60.0% after 2 h and a maximum FMD impairment of -35.1% after 4 h, without affecting endothelium-independent vasodilatation. The effects of HAGE on both FMD and reactive hyperemia were completely prevented by benfotiamine. Serum markers of endothelial dysfunction and oxidative stress, as well as AGE, increased after HAGE. These effects were significantly reduced by benfotiamine. CONCLUSIONS: Our study confirms micro- and macrovascular endothelial dysfunction accompanied by increased oxidative stress following a real-life, heat-processed, AGE-rich meal in individuals with type 2 diabetes and suggests benfotiamine as a potential treatment.Diabetes Care. 2006 Sep;29(9):2064-71
コメント